Methods for Describing Sets of Data

2.5 Measures of Variability

- 1. Which do you think has more variation: the SAT scores of students entering Harvard as freshman or the SAT scores of graduating seniors in Miami-Dade County?
- 2. Which do you think has more variation: the salaries of Fortune 500 company CEO's or the salaries of people living in South Florida?
- 3. Find the Variance and the Standard Deviation for the following female weights: (Note, use the following to help speed up the calculations: n = 16, $\sum X = 2,002$, and $\sum X^2 = 254,442$).

145	110	125	130
134	109	115	130
140	125	115	141
100	95	143	145

4. Find the Standard Deviation for the following fast-food drive thru times : (Note, use the following to help speed up the calculations: n = 12, $\sum X = 1981.67$, and $\sum X^2 = 327958.23$).

162.86	160.24	158.56	165.32
159.01	173.25	184.20	174.12
157.41	162.58	163.01	161.11

Answers:

- 1. The SAT's of graduating seniors since the Harvard students are likely to all be within a certain narrow band of scores defined by some minimum entrance requirement.
- 2. People living in S. Florida have more variation since they will range from rich to poor while CEO's of the Fortune 500 are all rich.
- 3. Variance: $S^2 = 262.8$ pounds squared; Standard Deviation: S = 16.2 pounds
- 4. Standard Deviation: S = 8.02 seconds